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BeNeDICT J. LEIMKUHLER

Department of Mathematics, University of Kansas, 405 Snow Hall, Lawrence, Kansas 66045

AND

RoBERT D. SKEEL*

Department of Computer Scienee, University of Hlinois, 1304 West Springfield Avenye, Urbana, Hlinois 61801

Received January 6, 1993

Recent work reported in the literature suggests that for the long-time
integration of Hamiltonian dynamical systems one should use methods
that preserve the symplectic {or canonical) structure of the flow. Here
we investigate the symplecticness of numerical integrators for con-
strained dynamics, such as occur in molecular dynamics when bond
lengths are made rigid in order to overcome stepsize limitations due to
the highest frequencies. This leads to a constrained Hamiltonian system
of smaller dimension. Previous work has shown that it is possible to
have methods which are symplectic on the constraint manifold in phase
space. Here it is shown that the very popular Verlet method with
SHAKE-type constraints is equivalent to the same method with
RATTLE-type constraints and that the latter is symplectic and time
reversible. {This assumes that the iteration is carried to convergence.)
We also demonstrate the global convergence of the Verlet scheme in
the presence of SHAKE-type and RATTLE-type constraints. We perform
numerical experiments to compare these methods with the second-
order backward differentiation method, commonly recommended for
ordinary differential equations with constraints.  © 1994 Academic Press,
Inc.

1. INTRODUCTION

Vibrational Newtonian models used in molecular
dynamics simulations lead to Hamiltonian systems of
ordinary differential equations of the form

Mg=p

1

ﬁ‘= _Vq V(?) ( )
where ¢, p e R" are, respectively, positions and momenta of
atoms of the molecule which are regarded as point masses,
M is a positive definite (typically diagonal) mass matrix and
F:R" — R is a potential function. In [22, 26], rigid bonds
were incorporated into molecular models to improve
efficiency. Fixing bond lengths and bond angles in the

* Supported in part by National Science Foundation Grant DMS 90
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vibrational model results in holonomic constraints of the
form g{g) = 0 and leads to constrained dynamical equations
(Lagrangian equations of the first kind):

Mg=p (3)
P=-V,Vlg)+g'lg)i (4)
glg)=0 (3)

(see, e.g., Hildebrand [15]).

A simple two-step discretization was used by Verlet [27]
to solve (1)-(2) and it remains the most popular discretiza-
tion scheme for unconstrained equations. In [22], a direct
numerical integration scheme {SHAKE) based on the
Verlet method and preserving the constraint relationships
was presented for (3)~(5). This scheme was later adapted by
Andersen [3] into an alternative velocity-level formulation
that preserves certain additional invariants; this is the basis
of the RATTLE algorithm.

The flow of a Hamiltonian system like (1)—(2) possesses
an important symplectic geometric structure [4]. Briefly,
the sum of the areas of the projections of an oriented two-
dimensional surface in phase space onto the g, p; coordinate
planes is unchanged under the flow. Much recent research
has gone into developing symplectic numerical discretiza-
tion schemes that inherit the symplectic structure of the
original system. It has been observed in numerical
experiments [207] that symplectic methods with fixed step-
size possess better long-term stability properties than
nonsymplectic methods. In [21] it was demonstrated that
the Verlet method is symplectic, and further work (recently
surveyed by Sanz-Serna [23]) has uncovered a variety of
symplectic discretization schemes.

The symplectic integration of the constrained equa-
tions (3)—(5) was treated in [16] via symplectic param-
eterization of the constraint manifold and by methods
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based on Dirac’s theory of weak invariants. These methods
lead to unconstrained Hamiltonian systems which can be
handled by direct application of symplectic methods, but
the new Hamiltonians are nonseparable, meaning that
they cannot be written in the form H(g, p)=T(p)+ Vig),
and hence are not amenable to discretization via explicit
symplectic methods like the Verlet scheme. This appears to
rule out parameterization and weak-invariant methods
for the computationally intensive molecular dynamics
application.

In this paper, we consider direct symplectic numerical
discretizations of the constrained equations{3)-(5). We
show that the Verlet methods with SHAKE-type and
RATTLE-type constraint algorithms yield identical solu-
tions for the positions at meshpoints and at half-steps in the
velocity. Both methods preserve the wedge product,
although SHAKE is not, strictly speaking, a symplectic
method, as the meshpoint velocities are not tangent to the
constraint manifold defined by (5). Verlet with ecither
SHAKE-type or RATTLE-type constraints is time revers-
ible, an important feature for difference schemes [7]. We
demonstrate that both methods are reducible to a certain
discretization of an unconstrained system of differential
equations, from which a global convergence result follows.
Other numberical methods for constrained differential
equations based on backward differentiation formulas
{(“BDF” methods) are in use for engineering problems in
constrained form; we compare RATTLE in numerical
experiments with a second-order BDF method and find the
symplectic scheme the clear winner.

2. SYMPLECTIC MAPS AND SYMPLECTIC
DISCRETIZATION SCHEMES

For full rtank g, we refer to the set 4 = {(q, p) | g{g) =0,
£'(g) M~ 'p=0} as the “solution manifold” associated with
(3)-(5). (This definition is justified by observing that
Egs. (3)}-(5) define a hidden constraint g'(q) M~ 'p=0
which must be satisfied by initial values (gg, pp) in order to
guarantee existence of smooth solutions.)

To define a natural “symplectic structure” [4] on .#, we
first parameterize the manifold locally in 2 — 2m variables,
say positions deR”~™ and momenta feR"™". This
can be done in such a way that rewriting the differential
equations (3)-(5) as equations in the parameters results in
an unconstrained Hamiltonian system, meaning that the
2-form dd A df is preserved by the reduced flow. Then it can
be shown [16] that with p and q restricted to .4, dé A df =
dg A dp. The flow (on .# = R™) of (3)-(5) preserves the
2-form dq A dp. This motivates the following definition: Let
(0, P)=d(q, p) be a differentiable mapping from .# into
itself, ¢ is said to be a symplectic mapping if it preserves the
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restriction to .# of the symplectic form in R?, ie., if
dQ ~ dP =dqg ~ dp.

A one-step method for (3)-(5) is defined as a mapping
W, 4 — # on a parameter i that takes (q,,p,) into
(@us1» Pns 1) One of the simplest symplectic discretizations
(i.e., for which ¥, is a symplectic mapping) for integrating
the unconstrained equations (1)-(2) is the Verlet scheme’:

QH+I—2q.n+qn71= '_thiqu V(qrr) (6)

Verlet defined p,= M(q,.,—4.-,)/2h. These equations
can be rewritten in the following velocity formulation:

Gns1=8,+hM ~'p, 112 (N
Pov12=Pn— {h/2}Vq V(q,) (8)
pn+]=pn+1/2_(h/2)%V(qn+[)' (9)

Here (g,, p,} represents an approximation to the solution
(g(1,), p(t,)) at time ¢,, and the constant stepsize 4 is just
the difference of any two successive time points: ¢, ;=
t,+h

Although (7)~(%) and (6} are mathematically equivalent,
it is known (see, e.g., Hairer, Norsett, and Wanner [14,
p. 4307) *hat (6) has an instability with respect to rounding
errors which is not present in leap-frog or in (7)—(%); hence
the velocity formulation is to be preferred.

The method (7}-(9} is second-order accurate in time,
meaning that on a fixed interval [0, T'], if we define the
error at the nth time level 7, = nh < T in the solution
computed with stepsize & as el = |[(g,, p.) — (q(z,}, p(z.))I,
then e’ = O(#?), uniformly; ie., there are constants >0
and kg > 0 such that
eh < Ch’
whenever A< h,and 0 n< N=T/h

A simple linear coordinate transformation allows us to
restrict attention in the sequel to the case M =J. Setting
g=M ~*§and p=M'?pin (1)-(2), orin (3)-(5), and set-
ting ¥(g)= V(M ') and g(g) = ${M 'g), we find that the
form of the equations is unchanged except that in the new
system the mass matrix is 7. All of the results of this paper
apply equally to cases with M any positive definite matrix
(so that a positive definite square root M /2 is defined).

3. DIRECT SYMPLECTIC DISCRETIZATION OF
CONSTRAINED SYSTEMS

A popular method for adapting the Verlet method to
handle bond-length and bond-angle constraints is the

' This scheme is sometimes referred to by numerical analysts as
StSrmer’s rule.
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SHAKE algorithm [227. If the algorithm, as described in
[2]. is iterated to convergence, it can be expressed in our
notation (with M =17) as

Tnv1= 2Qn_ Gu—1— h2v; V(qn) + hzg’(Qn)l ;'n (10)
8(ga1)=0. (11)

Setting p, , 1, = (g, 1 1 — 4.)/h yields the leap-frog form:

q"+l=qn+hpn+l,’2 (]2)
prz+l,:’2='pn—1/27th V(qn)_i'-hg’(qn)r A—'n (13)
g(q"+l)=0‘ (14)

The local error occurring after one step with {12)-(14} is
O(h7). If we further define p,=(q,, 1 —4,_}/(2h), we
obtain

Gns1=4nt hPus1p (15)
Prirn=Pa— W2V, V(g )+ (R2)g'(g,) 4, (16)
8(¢,+1)=0 (17)
Prv1=Pus1n— (h/Z)Vq V(gusi)
+{h12) g1 qn 1) Ay (18)

For convenience and to distinguish our formulation from
other possible formulatons of SHAKE, we refer to (15)—(18)
as V8 (for velocity-level SHAKE). VS cannot be a sympiec-
tic method as we have defined it above since, although
g(g,) =0 at every grid point, the hidden constraint will typi-
cally fail to be satisfied: g'(g,.) M ~'p,#0, even when the
starting values lie in .. On the other hand, we can obtain
another perspective by viewing (15)-(18) as a one-step
mapping in .4, = {(g, p)| g(lg) =0}. Here the differentials
obey

ag, ., =dq,+hdp,, pn (19}
dp, 41 =dp, — (hj2) dV, Vi(g,)
+{(h/2)d(g'{q,) A,) (20}
8(gny1)dg, =0 (21}
dp, ., =4dp, .1 —(h/2) qu Vignii)
+ (W2 d(g'(gn1) 40ii) (22)

Letting the Hessian of ¥ be denoted by I, we see that
dv,V(g,) = V"(q,)dgq,. Taking the wedge product of
differentials at the end of a step, we have

A1 A dp,
=dq, . A AP 1= W2) V(g0 1) dGn 1)
=dg, A AP~ (W2)dg, A Vg, ) dgn
+(H2)dg, o A Ay} Anir) (23)
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The second term in (23) can be eliminated by use of the
following lemma which follows from the skew-symmetry of
the wedge product and [rom the fact that for a matrix 8 of
appropriate dimensions, du A (B dv) = (B’ du) » dv.

Lemma 3.1. Let du be an arbitrary differential in R",
and let A be any nxn real symmetric matrix then
du ~ (A du)=0,

Another lemma allows us to eliminate the third term
in (23).

LEmMMA 3.2 dg, A d(g'(g,) 4,)=0.
Proof.
dg, ~ d(g'(q,)" 4,)
=dg, ng'(q,) dA,+ X AL dg, AT, dq,

i=0

where the components of 4, have been indexed by a super-
script and 177 is the Hessian of the ith constraint function
Now dg, ~g'lg,Ydi,=g'(g,)dg, A di,=0, since
g(q,)=0=g'(q,) dq,=0. Each of the terms of the summa-
tion can be eliminated by Lemma 1, proving Lemma 2. |

Applying the lemmas in (23}, we arrive at

g, Adp, 1 =dg,1 A dPu+1/2-

Next, from (19), we have

Aosr AP, 1 p=dg, +hdp, ) AdpP, 1y
=dq, N dp,.1p
=dg, A (dp,—(h/2) dV, V{g,)
+hd{g'(.)" £2)).

Applying both lemmas to simplify the latter expression, we
have shown that

dqn+1 A dpn+l=dqn A dpn

and it follows that (15)—(18) preserves the wedge product.

4. VELOCITY-LEVEL CONSTRAINTS: RATTLE

Although VS does not define a symplectic mapping, one
can correct this deficiency by a simple device: if the
momenta p,_, are projected onto the hidden constraints,
then the result is a one-step mapping that both (i) maps .#
into .# and (i1) preserves the wedge product. The converged
RATTLE algorithm [3] can be expressed as

qn+1=qn+hpn+1/2 (24)

h h \
pr!+l,t'2=pﬂ_EVt:{V(qn}+§gr(q}?)rAf:)Q {25)
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where 4! is chosen so that

gld,1)=0 (26)
and
h h ] v}
pn+l=pn+1/2—§V:(V(qn+l)+§g(q"f-l-l) ’ln+19 (27) .
where (") | is chosen so that
£(gns1) Posr=0. (28)

We refer to (24)-(28) as a VR step. If we write

Gus1=Gnt AP, 12

then we find

h aqr alv
Pavipp=Pu-rpp—hV, Vig,) + XACl (A7 + 257,

where A"’ can be written explicitly in terms of p, and
V,¥(g,). Here A" is chosen so that

g(qn + hpn+ 1,"2} = Oa

we recognize that this is equivalent to the leap-frog variant
of the ¥S method with 4, = $(A1 + At"), which is simply a
change of variables for the unknown Lagrange multipliers.

Thus VS=VR at the half steps ¢,,,, but RATTLE
satisfies both position and velocity constraints at the
meshpoints.

To see that solutions generated by the RATTLE method
at meshpoints preserve the wedge product, we note that,
from (27),

h
Aqur A dp, e =dg, . A dpn+l,ﬂ‘2_§dQM+l A dvq Vigusy)

h
+5dqn+l A dg’(qthl)r )'57‘11)

by the reasoning of the previous section, the latter two terms

here vanish, and then again using the arguments of the
previous section, we have that

R/ 172 =dq, r dPn—uz
and it follows that

dqn+l A dpﬂ+l=dQH A dpn

so the method is symplectic,
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Note that VR can also be viewed as a method by which
the V8 steps are symplectically projected into .#, since we
can rewrite the equations as

‘?n+1=Qn+th+1,f2 (29)
Pur12=Po— (H2)V, V(g )+ (H2)g'(q.) 4,  (30)
g(g,,1)=0 (31)

Pri1= (1_‘%g(qn+l))(Pn+1/2_{h/2}Vq V(g,,.)

+(A/2)g'(qn 1) £n i), (32)
where #(q)= g'(9) (g'(9)&'(9))~" g'(q) is a projector
matrix,

5. GLOBAL CONVERGENCE OF THE SHAKE AND
RATTLE METHODS

Equations (15)-(18), with or without the endpoint pro-
jection define an approximation of (3)}-(5) which is locally
O(#*). This means that starting from the same initial point,
the exact and approximate solutions will differ after a single
time step of size /# by an amount that tends to zero like the
third power of k; however, this fact alone does not imply
global second-order convergence of the method as the
classical (uncenstrained} ODE {ordinary differential equa-
tion) discretization theory does not carry over directly to
the constrained case.

Noting that both bond angle and bond length type con-
straints are quadratic greatly simplifies the discussion. As
we have seen, the fact that constraint (5) is identically
satisfied along the solutions implies that the equation
g'(q)p=0 is also satisfied along the solutions. Differen-
tiating the latter equation with respect to time yields

glgyp+¢g'lp.p1=9,

where g”[-,.] represents the tensor second derivative
on two arguments. Because the constraints are assumed
quadratic, the expression g”[p, p] is independent of 4.
Substituting for p from (4), we obtain

g @)=V, V(@) +g(q) )+ g[p, p]1=0.

We can solve this equation for A= i{g, p). Reintroducing
this expression in (3)-(4) results in

g=p (33)
p=—-(U—-#}V,Vg)

—g'(gY (glatg'(9)) " g"[p. P (34)

This is an (unconstrained ) ODE system which preserves the
hidden constraint as an integral invariant. It is probably not
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computationally efficient to formulate and directly integrate
(33)-(34) numerically, and, moreover, this under/ving ODE
is not typically Hamiltonian.? However, the following
theorem shows that if the equations of SHAKE and
RATTLE are solved sufficiently accurately, then they are
equivalent to the direct discretization of (33)-(34} by a
certain numerical scheme,

THEOREM 35.1. Neglecting rounding errors, the VR and
VS methods are step-by-step equivalent 1o the discretization
of (33)-(34) by a convergent second-order ODE method.
Hence both the VR and VS schemes are globally second-order
convergent.

The proof is given in Appendix A.

6. NONSYMPLECTIC DISCRETIZATIONS OF
CONSTRAINED PROBLEMS

The numerical solution of general differential-algebraic
equations (DAESs), including problems of the form (3)-(3),
has been an important recent topic in scientific computing,
General methods, as well as specialized schemes for solving
the equations of motion of multibody mechanical systems
are surveyed in, ¢.g, [5, 9]. Among the multistep methods,
methods based on backward differentiation forrmulas (“BDF
methods”) have been shown to converge with fixed and
variable steps for constrained problems [17, 11]. Applying
the k-step fixed-stepsize BDF formulas to (3)-(5) results in

k

Z ctiq»w17r':"!1j‘4rﬁ115’n+1 (35)
i=0
3
Y @ Pay1oi= =V, Vg, } g (g 1Y Auy (36)
i=0

0=1g(q,41) (37)

One step of this method requires substantially more com-
putational work than VS or RATTLE, since the methed
treats both g and V, I implicitly. On the other hand, morc
efficient, semi-implicit implementations [9, 18] are in use in
multibody dynamics. The BDF formulas are known to be
highly stable methods (they are suitable for “stiff” ODEs
[1073), and one expects some dissipation of energy when
they are used. The BDF methods are popular as solution
methods for general systems of differential-algebraic equa-
tions, and they form the basis for numerical integration in
the resecarch code DASSL.

% For the construction of Hamilltonian underlying ODEs, see [16].
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7. NUMERICAL COMPARISONS AMONG
THE METHODS

We implemented VS and VR iterations and the second-
order BDF method (35)(37) {with k=2). The methods
were applied to a simple test problem consisting of a set of
six nodes connected together by springs with spring con-
stant x as shown in Fig. 1. The coordinates of the ith node
in the figure are labelled (g,;_ ., 4»;), and the corresponding
momenta are (p,;_;, P»;). The problem was simulated on
the time interval [0, 107 with various choices of the step-
size h. Although much more complicated model probiems
should eventually be treated, particularly in conjunction
with the evaluation of various implementation strategies,
the simple problem does illuminate important basic aspects
of the methods discussed here. The Lagrangian equations
(in cartesian coordinates) describing the problem of Fig. |
are in the form (3)-(5) with g and p taking values in R'?,
M =1, (the 12 x 12 identity), V' = 24'Kq, where

[ 1, ¢ -, 0 0 0
0 12 0 _12 0 0
x| = 0 &= 0 -5 0
0o -5 0 21 0 L
0 0O -, 0 I 0
| 0 0 ¢ -5 0 I, |
and
(41— ¢:)°+(g2—qa)* =1
(43— 45)° +(qa—ge)’ — 1
glg)=1 {gs—g:)" +{gs—gs)* —1
(%*%)24‘(98_9‘10)2*1
(‘19“111)2"'(‘]10*‘112)2_1
1.1, Implementation
The efficient implementation of SHAKE- or

RATTLE-type constraints for large molecules requires that
careful use be made of the available special (sparse) struc-
ture present in the constraints of typical molecular
problems. We outline the simplified approach used here

FIG. 1.

Test problem
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FIG. 2. Residual of the velocity-level constraint: V8 scheme.

to obtain numerical comparisons of the underlying time-
stepping schemes.

For the implementation of an implicit method, the first
probiem is to choose an explicit predictor that provides an
initial guess for an iterative solution of the nonlinear equa-
tions. In our experiments, we used a quadratic interpolating
passed through the previous solution values as a predictor.

Equations (13)-(18) can be rewritten as a nonlinear
system for 1,. We employed an iteration equivalent to an
approximate Newton iteration on this nonlinear system. As
a stopping criterion for the iteration, we have demanded
that the change in the iterates and the normed residual of g
be smaller than a certain prescribed tolerance grol in
two-norm. Note that in order for VR or ¥S to be symplectic
we must accurately solve the nonlinear equations.

1 e T
F o 3
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10 b .
E + o 3
= + ° 1

w
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E 10 : ]
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L o VR E
103 L — i [y Sy e
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h

FIG. 3. Comparison of numerical error: VR vs BDF.
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F1G. 4. Comparison of absolute energy error: VR vs BDF.

In the case of VR, once ¢, , and p, . ,,» are known, p,, , ,
is computed by solving another linear system.

1.2. Velocity-Level Constraints in SHAKE

We first investigated the behavior of the residual of the
velocity-level constraint g'(g)p =0 when the VS method is
used (of course, RATTLE satisfies this constraint to the
rounding error). Graphs of the velociy constraint residual
for V8 with #=001 are shown in Fig. 2. The figure
illustrates the fact that, although error will be introduced in
the velocity level when using SHAKE, these errors are not
amplified from step to step. (This fact can also be
demonstrated analytically.)

1ot

100 L

101

T

VR
102§ 1 ) M=

abs. eneTgy error

103

104}

105 . . . . . . .
0 10 20 30 40 50 60 70 80 90 100
fime t

FIG. 5. Conservation of energy over time; YR vs BDF,
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1.3. Comparison of RATTLE and BDF(2)}.

We next compared the behavior of the VR and BDF
methods. We computed the numerical solutions for various
values of the stepsize and compared them with a baseline
solution that was computed with a much smaller stepsize
than those used in any of the other runs, to obtain estimates
for the numerical error. Figure 3, showing the endpoint
numerical error (at ¢ = 10) versus stepsize in log-log scale,
indicates the clear superiority of the symplectic scheme in
terms of accuracy for a given stepsize. In Fig. 4 we have plot-
ted the endpoint absolute energy error versus the stepsize
used, again in log-log scale, showing an even greater spread
between the symplectic and nonsymplectic integrators.

Finally, we considered the behavior over time of the
energy error in YR and BDF(2) discretizations with an
identical stepsize of » =0.01. In Fig. 5, we see that, even on
a relatively long time interval of [0, 100], the energy for
RATTLE is approximately conserved in comparison
with BDF.

1.4. A Lennard-Jones Model Problem

To obtain a more realistic model for the molecuiar
dynamics problem, we looked at a small “molecule” consist-
ing of a planar constraint chain of seven atoms in a
Lennard-Jones (6-12) potential. Specifically, for two atoms
at distance d, the potential between them was

#d)=0.1(d" 2= 2d°).

The problem was used in [297] as a modei for energy min-
imization. We started with an initial configuration at the
global minimum of potential and applied vertical initial
velocities of magnitude 0.25 in opposite directions at the
ends of the chain. In this way, the linear momentum of the
molecule center of mass is zero, and the whole structure
spins in place. There are essentially two components of the
motion: (1} a “rigid body” motion and (2) a vibration due
to the Lennard-Jones potential. We integrated using the VR
and BDF(2) schemes on [0, 200] with a stepsize of h=0.1

1 1
0.5 9.5
o Q
Q.5 0.5
- 1
18 1 4] 1 18 -1 ¢ 1
VR BODF-2

FIG. 6. BDF2 and RATTLE motion of one atom on the time interval
(0, 200).
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" L 1 M L " L
[1] 20 40 &0 ) 106 120 140 180 180 200

FIG. 7. Enersy for BDF-2 and RATTLE solutions.

and a tolerance of 0.000001 for the nonlinear solver.
Figure 6 compares the motion of the first atom of the chain
as computed by the two integrators. After a very short inter-
val, the BDF scheme has removed the vibrational com-
ponents which are well resoclved on the entire interval by the
VR method. The energies are compared in Fig. 7.

For this example, we observed that the RATTLE scheme
converged for larger stepsizes than the BDF method. The
damping capability of the BDF family of integrators is
sometimes exploited in order to “integrate over” fast stiff
modes with large stepsizes, however, the artificial dissipa-
tion that these methods introduce is frequently inap-
propriate to the physical nature of the problem.

8. CONCLUSION

From our experience, if the constraint relationships are
solved accurately enough (gtol is sufficiently small), then
¥S and VR produce equivalent results, although VS iterates
do not satisfy the hidden constraints. Both methods will
outperform BDF in terms of computational efficiency. Since
the VS iteration can probably be implemented most
efficiently of all, one suspects that the ideal method consists
of a sequence of VS steps followed by a VR step only when
output is desired.

APPENDIX A: PROOF OF GLOBAL CONVERGENCE OF
SHAKE AND RATTLE

Before proceeding with the proof of Theorem 5.1,
consider the general unconstrained second-order system of
ordinary differential equations
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g=p
=d{q, p)

with smooth ¢. These equations can be discretized by

Grst =Gn T BPrsip (38)

h
Por12=Pn_1pp+t 5 (D> Pu 1,'2) F (G0 Pus 1)) (39)

By substituting the true solution (i.e., ¢(t,, ) for g, |,
etc.) in (38} and expanding in Taylor series, it is easy to
see that (38)-(39) has a local error of O(A*). Standard
arguments yield second-order global convergence (see, e.g.,
Hairer, Negrsett, and Wanner [ 14, Theorem 3.6]).

Proof of Theorem 5.1. Expand g around ¢=¢, and
evaluate at ¢ =g, to obtain

g(qn+ 1)= g(Qn)Jr g::(iIn+ 1 _er}

lg”[qrr+l“q"= Grt1 (40)

_qn]’

where we have written g}, for 2'(g,)
Making use of the equations defining ¥§ we may write

r h L
EnPlnr12= — 58 [Pns 1725 Pr+ 172]-

Next, introducing p,, , ,,» from (13), we obtain an equation
that can be solved for 4,

1 4 — r
)“n=h_(g;lgnl) ! [ghgnpn—lﬁ
2

e N Vig,)— (F2) g [Py 12> Pusr2]] (41)

Reintroducing this expression for 4 in (13) and simplifying
somewhat, we arrive at

qn+1=qn+hpn+lj2 (42)

Pusip=U—=H) p, 1p—hI-H)V, V(g,) (43}
h 1,7

2gn (gr!gn ) 4 [pn+1/2!pn+l/2]' (44)

Now we evaluate the second-order expansion of g at g,,_,
and use (12} at the previous step to obtain

LEIMKUHLER AND SKEEL

! h n
gnpn—l/2 =§g [pn— 172> Pr_ 1,"2]'

This leads, finally, to

qn+] =4a + hpn+1/2
Prr12=Pnoapp— h{l— «K,)Vq ¥ig,)

(45)
(46)

h ’r - ”
__gn (gn ) l(g [pn+1,f23pn+1/2]

+g"[p._ y2s Pu—12])-

We recognize (45)-(46) as none other than the discretiza-
tion (38)-(39) applied to the underlying ODE (33)-(34). 1
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